

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

COMPARISONS OF ATTACKS ON HONEYPOTS WITH
THOSE ON REAL NETWORKS

by

Binh T. Duong

March 2006

 Thesis Advisor: Neil C. Rowe
 Second Reader: J.D. Fulp

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Comparisons of Attacks on Honeypots with Those on
Real Networks

6. AUTHOR(S) Binh T. Duong

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 Honeypots are computer systems deliberately designed to be attack targets, mainly to learn about cyber-attacks and
attacker behavior. When implemented as part of a security posture, honeypots also protect real networks by acting as a decoy,
deliberately confusing potential attackers as to the real data. The objective of this research is to compare attack patterns against
a honeypot to those against a real network, the network of the Naval Postgraduate School. Collection of suspicious-event data
required the implementation and setup of a honeypot, in addition to the installation and use of an intrusion-detection system. A
statistical analysis was conducted across suspicious-event data recorded from a honeypot and from a real network. Metrics
used in our study were applied to the alerts generated from Snort 2.4.3, an open-source intrusion detection system. Results
showed differences between the honeypot and the real network data which need further experiments to understand. Both the
honeypot and the real network data showed much variability at the start of the experiment period and then a decrease in the
number of alerts in the later period of the experiment. We conclude that after the initial probing and reconnaissance is
complete, the vulnerabilities of the network are learned and therefore fewer alerts occur; but more specific signatures are then
aimed at exploiting the network.

15. NUMBER OF
PAGES

73

14. SUBJECT TERMS Honeypots, Intrusion Detection System, Deception, Cyber Attack Patterns

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

COMPARISONS OF ATTACKS ON HONEYPOTS
WITH THOSE ON REAL NETWORKS

Binh T. Duong

Civilian, Naval Postgraduate School
B.S., Cal State University, Long Beach, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2006

Author: Binh T. Duong

Approved by: Neil C. Rowe, Ph.D.

Thesis Advisor

J.D. Fulp
Second Reader

Peter J. Denning, Ph.D.
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Honeypots are computer systems deliberately designed to be attack targets,

mainly to learn about cyber-attacks and attacker behavior. When implemented as part of a

security posture, honeypots also protect real networks by acting as a decoy, deliberately

confusing potential attackers as to the real data. The objective of this research is to

compare attack patterns against a honeypot to those against a real network, the network

of the Naval Postgraduate School. Collection of suspicious-event data required the

implementation and setup of a honeypot, in addition to the installation and use of an

intrusion-detection system. A statistical analysis was conducted across suspicious-event

data recorded from a honeypot and from a real network. Metrics used in our study were

applied to the alerts generated from Snort 2.4.3, an open-source intrusion detection

system. Results showed differences between the honeypot and the real network data

which need further experiments to understand. Both the honeypot and the real network

data showed much variability at the start of the experiment period and then a decrease in

the number of alerts in the later period of the experiment. We conclude that after the

initial probing and reconnaissance is complete, the vulnerabilities of the network are

learned and therefore fewer alerts occur; but more specific signatures are then aimed at

exploiting the network.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BACKGROUND ..3
A. HONEYPOTS ..3
B. INTRUSION-DETECTION SYSTEMS..5

1. Snort 2.4.3 ...6
a. Inner Workings of Snort 2.4.3..6

C. SURVEY OF RELATED WORK ..9
1. Effectiveness of Honeypots..9

III. TESTBED SETUP, CONFIGURATION, AND RATIONALE11
A. EXPERIMENT SPECIFICATION..11

1. Hardware Specification...11
2. Software Specification ...12
3. Network Configuration ...15
4. Problems Encountered ..16

B. THE SCHOOL NETWORK...17
1. Hardware/Software Specification...17
2. Network Configuration ...17
3. Problems Encountered ..18

IV. DATA RESULTS AND EVALUATION ...21
A. HONEYPOT DATA ANALYSIS ...21

1. Distribution of Alerts...21
a. Alerts over Entire Collection Period21
b. Alerts Compared by Week...22
c. Alerts by Hour ...23

2. Distribution of Classification ..25
3. Distribution of Signatures ...29

B. SCHOOL NETWORK DATA ANALYSIS ..32
1. Distribution of Alerts...32

a. Alerts over Entire Collection Period32
b. Alerts by Hour ...33

2. Distribution of Classification ..34
3. Distribution of Signatures ...35

C. COMPARISON OF HONEYPOT DATA TO REAL NETWORK
DATA ..36

V. CONCLUSION AND FUTURE WORK ...37
A. CONCLUSION ..37
B. FUTURE WORK...37

APPENDIX A. STARTUP INSTRUCTIONS ...39
A. STEP-BY-STEP STARTUP INSTRUCTIONS ..39

 viii

1. Instructions for Starting Honeypot Machine39
2. Instructions for Starting Data-Capture Machine39
3. Instructions for Starting Router Machine.......................................40

APPENDIX B. DETAILS OF LAB EXPERIMENT ..43
A. ROUTER CONFIGURATION...43

1. Details of Necessary Files ..43
2. Options and Details for Apache Script ..43
3. Options and Details of Oinkmaster Script.......................................43
4. Options and Details of PostgreSQL Interactive Terminal.............44

a. Sending Query Results to a File ...44
5. Options and Details of Snort Script ...45

B. DATA-CAPTURE CONFIGURATION..46
1. Details of Necessary Files ..46
2. Options and Details of PostgreSQL Script46

C. HOW TO SETUP ODBC CONNECTION TO NPS NETWORK............47

APPENDIX C. ADDITIONAL GRAPHS..49
A. HONEYPOT CLASSIFICATION ANALYSIS..49

LIST OF REFERENCES..55

INITIAL DISTRIBUTION LIST ...57

 ix

LIST OF FIGURES

Figure 1. Snort Architecture..7
Figure 2. Snort Process of Detecting Suspicious Data..8
Figure 3. Snort Database Structure [13]..14
Figure 4. Experiment Network Configuration ..15
Figure 5. School’s Network Configuration ...18
Figure 6. Honeypot Time Plot of Distribution of Alerts ...22
Figure 7. Honeypot Box Plot by Week ...23
Figure 8. Honeypot Alerts by Hour per Week ..24
Figure 9. Honeypot: Frequency of Classification ...27
Figure 10. Honeypot: Alert Class Percentage over Time..28
Figure 11. Honeypot: Alert Class Percentage without Protocol-Command Decode.28
Figure 12. Honeypot: Frequency of Alert Signature Category ..29
Figure 13. Honeypot: Individual Frequency of Alert Signature Categories31
Figure 14. School: Time Plot of Distribution of Alerts...33
Figure 15. School: Alerts by Hour ..34
Figure 16. School: Frequency of Alert Classification...35
Figure 17. School: Frequency of Alert Signature Category..36
Figure 18. Honeypot Classification Legend..49
Figure 19. Honeypot Classification: Jan. 29 – Feb. ..50
Figure 20. Honeypot Classification: Feb. 05 – Feb. 11...50
Figure 21. Honeypot Classification: Feb. 12 – Feb. 18...51
Figure 22. Honeypot Classification: Feb. 19 – Feb. 25...51
Figure 23. Honeypot Classification: Feb. 26 – Mar. 04 ..52
Figure 24. Honeypot Classification: Mar.05 – Mar. 11 ..52
Figure 25. Honeypot Classification: Mar.12 – Mar. 18 ..53

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Default Ruleset for Snort 2.4.3 ..9
Table 2. Experiment Hardware Specification ..12
Table 3. Experiment Software Specification ...14
Table 4. Metrics Used in Honeypot Analysis ..21
Table 5. Honeypot: Summary of Numbers of Snort Alerts ...23
Table 6. Snort Alert Categories [5]..26
Table 7. Snort Alert Counts by Type Compared for Two Successive 13-day

Periods.[14]..32
Table 8. Essential Files of the Router Machine ...43
Table 9. Essential Files of the Data-Capture Machine...46

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGEMENTS

I would like to thank Reese Zomar and the Naval Postgraduate School Network

Security Group for providing the necessary data. I would like to extend a very special

thank you to Charles Herring and Ryan Self for all their technical support and advice. I

greatly appreciate their gracious attitude and patience.

Special thanks to my thesis advisor, Professor Neil Rowe and his colleague John

Custy for their assistance and guidance. Thank you to Professor Richard Harkins for

providing the laboratory space and equipment.

Last but not least, thank you to my partner, Glenn Fukushima. Without his

support, none of this would have been possible.

This material is based upon work supported by the National Science

Foundation under Grant No. DUE-0114018. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author

and do not necessarily reflect the views of the National Science Foundation.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Cyber-attacks are a serious problem that resulted in over $130 million in losses

according to the 2005 CSI/FBI Computer Crime and Security Survey [1]. As indicated in

their survey, virus attacks and unauthorized access led as the primary sources of financial

loss. An important security technology used to combat and understand these cyber-

attacks is the use of a honeypot. A honeypot is a form of deception employed to detect or

confuse unauthorized attempts on information systems. Honeypots have no productive

value; therefore any interaction captured is deemed unauthorized. This makes honeypots

a powerful technology for gathering and understanding information on threats.

The objective of this thesis is to distinguish attack patterns against a honeypot

from those against other kinds of computers. Varying the degree of deception on our

honeypot, we conduct a statistical analysis of suspicious-event data collected from our

high-interaction honeypot and that from data collected from our School’s internal

network. A high-interaction honeypot is defined as a network of computers using real

operating systems and services, whereas a low-interaction honeypot is software installed

that emulates different operating systems and services. Typically, low-interaction

honeypots have limited interactions, while high-interaction honeypots are more complex,

therefore providing more data to be captured [2]. With these techniques we hope to

measure the effectiveness of a honeypot by providing similarities and/or differences of

the attack pattern under different configurations using various metrics. In general, the

goal of our research is to test the value of defensive deception for a computer system, and

to describe and characterize the impact of deception when used on honeypots.

The setup of the experiments reported here includes the installation and

configuration of a honeypot and intrusion-detection system. We collect and extract data

from our honeypot and from the School’s network. We evaluate the data collected and

propose metrics to better analyze the suspicious-event data. Based on these metrics, we

model trends and compare them between the honeypot and the School's internal network.

Metrics used in our study derive from alerts generated from Snort, an open-source

intrusion-detection system. An intrusion-detection system is hardware and/or software

2

that are used to detect inappropriate or suspicious activity. Specifically, Snort produces

alerts by identifying signatures of suspicious traffic.

The purposes of a honeypot are for production or for research [2]. When used for

production purposes, honeypots help prevent and detect attacks for those organizations as

part of their defense posture. The purpose of our study is for research. We are not

interested in capturing information on new tools or analyzing the communication method

of the attacker but rather on the patterns of the suspicious-event data. We want to

understand the effectiveness and weaknesses of honeypots. In addition, we want to find

good metrics so that the massive amount of data is filtered so it can be effectively and

systematically analyzed and correlated.

The background of the key tools of the thesis such as honeypots and intrusion-

detection systems along with the survey of related work is described in Chapter II.

Chapter III details the testbed setup, configuration, and rationale of the honeypot

including hardware, software and network details. In addition, a brief description of the

School's network is provided, including specification of its hardware and network

configuration. The data analysis is described in Chapter IV. Chapter V provides

conclusions and suggestions for future work. Appendix A details startup instructions of

the honeypot, database, and intrusion-detection system. Appendix B details additional

options and necessary files of the lab experiment. Appendix C provides additional graphs

used in the data analysis of the honeypot.

3

II. BACKGROUND

This chapter provides background related to our study. The first section is a

history and overview of honeypots and their use as a decoy system or a form of

deception. The second section is an introduction to intrusion-detection systems and the

use and inner workings of Snort, the one we used. The third section is a survey of related

work in the area of honeypot effectiveness.

A. HONEYPOTS
The concept of honeypots has been around since before the invention of

computers. This concept involves a decoy computer system for which interactions are

solicited. The honeypot owner's purpose is to observe this interaction in hopes of gaining

a better understanding of those entities interacting with the deception. In the context of

the cyber world, we define a honeypot as “an information system resource whose value

lies in unauthorized or illicit use of that resource." [2]

The popularity of honeypots has greatly increased over the last few years. The

concept first surfaced in 1989 in Cliff Stoll’s “The Cuckoo’s Egg”. It was not until the

formation of the Honeynet Project in October 1999 that the concept was better

formulated and organized as a way to learn more about the "blackhat" community, their

tools, and their techniques. (A "blackhat" is a malicious person or hacker who

compromises the security of the system to gain unauthorized access to the computer

and/or network [3].) Founding members of the Honeynet Project were Marty Roesch,

Chris Brenton, J.D. Glazer, Ed Skoudis and Lance Spitzner. They would learn about

hackers through honeypots or honeynets and share the knowledge through their website

and publications. In just a few years, interest in learning about the blackhat community

greatly increased. With the explosion of technology, computer use, and the need for

better security measures, the Honeynet Project would eventually reach its limit. Enter the

Honeynet Research Alliance in January 2002, which consists of different organizations

across the world facilitating the learning and sharing of knowledge through the

deployment of honeynets.

4

The main kinds are low-interaction honeypots and high-interaction honeypots.

Low-interaction honeypots, or shallow decoys, emulate services [2, 4]. They are

typically easier to deploy than high-interaction honeypots, require less administrative

expertise, and less resources. Both an advantage and disadvantage of a low-interaction

honeypot is that it limits the amount of interaction; while this minimizes the risk of what

an attacker can do, it also limits the amount of data that is collected. In addition, low-

interaction honeypots “cannot properly mimic the response of real services or determine

activity after a compromise”[4]. High-interaction honeypots, on the other hand, are

deployed with real operating systems and actual services. They can generate an extensive

amount of data. Observing attackers exploiting services and operating system

vulnerabilities, we discover new tools used, learn about motives, and capture unexpected

behavior [2]. The disadvantage to high-interaction honeypots is the added level of

complexity and risk. They require more setup time, more monitoring time, more

administrative expertise, and more resources to build and configure the specified

operating system and services. Note that to prevent discovery of both kinds of honeypots

by attackers during reconnaissance, deception is crucial. This could mean writing more

elaborate scripts for low-interaction honeypots or customizing high-interactions

honeypots. We used a high-interaction honeypot in the experiments reported in this

thesis.

The risk of using a high-interaction honeypot can be significant. Potentially, an

unmonitored honeypot can foster criminal activity by allowing storage and/or distribution

of illegal materials, such as stolen credit card account numbers. Compromised honeypots

can also launch attacks on real computers or networks. Therefore there are two criteria to

minimize risk and maximize success: data control and data capture [2]. Data control

involves restricting malicious activity to the perimeter of the honeypot; this can be done

by limiting the outbound connections. Data capture involves monitoring and logging all

interactions. By doing so, criminal activity can be prevented if noticed early enough by

disabling the honeypot when suspect activities, such as increased inbound/outbound

connections or transfer of files, occur; but this takes effort, time and expertise. Real-time

monitoring and analysis of the captured data is itself an intensive and laborious task and

must not be taken lightly. In addition, there must be careful consideration as to where

5

and how the data is logged. Logging the data locally increases the risk of detection or

worse tampering or corruption of the captured data. “Captured data must be logged and

stored on a separate, secured system.”[2].

Honeypots have several other uses besides monitoring attackers. They serve to

protect real networks and their data by acting as a decoy, deliberately confusing potential

attackers. A special kind of honeypot called a "sticky honeypot" aids in slowing down

attackers or automated worms. Honeypots also allow security administrators to discover

and remedy weaknesses in the software and configuration of a host or network. Their

flexibility fits the dynamic nature of the cyber world.

B. INTRUSION-DETECTION SYSTEMS
An intrusion-detection system (IDS) is software that detects inappropriate or

suspicious activity on a computer or network. Intrusion is defined as any unauthorized

access to a network, computer or file. In addition to intrusion however, misuse

(inappropriate activity) should be detected and logged by an IDS. We further identify

three types of IDSs: host-based, network-based, and distributed. A host-based IDS

resides on a single computer and protects just that computer; it monitors the operating

system and detects modifications to files residing on the host system. A network-based

IDS can monitor more than one computer and is placed in a network; its "sensors"

examine packets as they transit the network. This is done by typically setting the

Network Interface Card of a dedicated computer on the network to "promiscuous mode".

The third type of IDS is a distributed IDS, which can combine both host-based IDSs and

network-based IDSs; suspicious events from a set of IDSs are reported to a central

database system [5]. Our testbed employed a centralized network-based IDS.

IDSs are further distinguished by how the inappropriate activity is detected. The

two approaches are anomaly-based and signature-based (or rule-based) detection.

Anomaly detection characterizes normal behavior and develops a profile of what is

"normal"; suspicious activities are deviations from this profile. An example anomaly-

based IDS is Stealth Watch [6]. Signature-based detection, uses a knowledge base of

specific data (often bit strings) characteristic of previously identified attacks. Detection

of suspicious activities occurs when a known signature and a packet match. An example

6

of a signature-based IDS is Snort, although it contains some anomaly-based detection

features. For our testbed, we deployed Snort version 2.4.3.

1. Snort 2.4.3
Snort® is an open source network intrusion prevention and detection
system utilizing a rule-driven language, which combines the benefits of
signature, protocol and anomaly based inspection methods. With millions
of downloads to date, Snort is the most widely deployed intrusion-
detection and prevention technology worldwide and has become the de
facto standard for the industry.[7]

Snort is the default standard for intrusion detection. We also deployed it because

we desired a similar data format to that obtained from the Network Security Group of the

Naval Postgraduate School. They use Snort to monitor the school’s network and

graciously offered samples of their data and Snort rules for our research.

a. Inner Workings of Snort 2.4.3
We briefly discuss the Snort architecture and how attacks are detected.

An important requirement of running Snort is the libpcap library for Linux systems or

WinPcap for Windows systems; this library does packet capture. Figure 1 is a high-level

outline of the Snort architecture in relation to the TCP/IP Model.

7

Figure 1. Snort Architecture

The layer at which the packets are passed from host to host is at the

datalink layer. The packet-capture library reads the packets at this point so that the Snort

engine can decode, detect, and alert as necessary. Once the libpcap/WinPcap captures a

packet, the following occurs [5]:

1) The Packet decode engine decodes the packet based on the link

layer protocol (e.g. Ethernet, Token Ring, or PPP).

2) The Preprocessor plug-ins handle the packets after the decoder

has parsed them, by reassembling packets, decoding protocols, and

doing anomaly-based detection.

3) The Detection Engine is where packets are matched to rules to

detect suspicious behavior. By using a multi-pattern search

algorithm, the detection engine checks multiple rules in parallel.

8

4) Detection plug-ins implements specialized tests.

5) Finally, if alerts are generated, then the Output plug-in is called.

This allows for various formatting and presentation of these alerts.

Supported plug-in formats include UNIX syslogs, XML-formatted

logs, and logging to relational databases such as Oracle, MySQL,

or PostgreSQL.

Figure 2 shows an incoming packet and the process involved before and

after the Snort engine detects the suspicious-event data. The rule shown is designed to

catch a UDP bomb attack. The alert is triggered when the detection engine matches UDP

packets going from any source IP address to any destination IP address, from port 19 to

port 7 [5].

Figure 2. Snort Process of Detecting Suspicious Data

The rule set ("knowledge base") used by Snort in examining packets is

stored in a directory of text files. Each text file is a ruleset; each ruleset contains a list of

9

rules similar to that of the UDP bomb attack. It is important that one frequently update

the rules so that new attacks are captured and properly alerted. The default Snort package

includes a rulebase with the rulesets shown in Table 1.

Default Ruleset
local.rules web-cgi.rules nntp.rules

bad-traffic.rules web-coldfusion.rules other-ids.rules
exploit.rules web-iis.rules web-attacks.rules
scan.rules web-frontpage.rules backdoor.rules
finger.rules web-misc.rules shellcode.rules

ftp.rules web-client.rules policy.rules
telnet.rules web-php.rules porn.rules
rpc.rules sql.rules info.rules

rservices.rules x11.rules icmp-info.rules
dos.rules icmp.rules virus.rules

ddos.rules netbios.rules chat.rules
dns.rules misc.rules multimedia.rules
tftp.rules attack-responses.rules p2p.rules

smtp.rules oracle.rules experimental.rules
imap.rules mysql.rules
pop2.rules snmp.rules
pop3.rules

Table 1. Default Ruleset for Snort 2.4.3

Rules can also be downloaded from the Snort website at www.snort.org

from the Sourcefire Vulnerability Research Team (VRT). Unregistered users can obtain

a static ruleset at the time of a major Snort Release. Registered users can download rules

five days after a release to the subscription users. Subscribers can download real-time

rules as soon as they are available. However, subscribers pay a fee of $195/month or

$495/quarter or $1795/year. In addition, Snort provides administrators with the

flexibility and ease of creating their own rules.

C. SURVEY OF RELATED WORK

1. Effectiveness of Honeypots
Some have defined the effectiveness of a honeypot by two measures: the ability to

deceive and the ability to solicit attacks. In [4] the authors compare the effectiveness of

two low-interaction honeypots, Deception Toolkit (DTK) and Honeyd. They measure the

10

effectiveness of the deception by determining the difference between the behavior of the

honeypot to the behavior of real services. The effectiveness of the solicitation is

measured by the number of unique responses that are solicited from the attacking

program. A lab was setup to perform a series of anomaly scripts and known attacks. The

known attacks included different types of malware. Automated scanners and auto-rooters

were examples of a ‘Category III’ attack used in the experiment. A paradox occurred in

the results of the experiment. Although the low-interaction honeypots did not deceive

well according to their tests, they did however receive more attacks from automated

scanners and auto-rooters than real systems did. This is an important conclusion. Many

systems attract common script kiddies or automated worms, botnets, and auto-rooters [8].

The ability to solicit attacks aids the effectiveness of honeypots as it increases the amount

of data that is collected. We also conclude that the type of traffic that honeypots receive

can depend on the type of deployment, i.e. low-interaction vs. high-interaction. Although,

both low-interaction and high-interaction honeypots are effective in soliciting attacks,

high-interaction honeypots have a better potential of improving the effectiveness of

deception. In high-interaction honeypots, we are not emulating services but in fact,

implementing real services. The only limitation is in our own ability to properly and

creatively configure and deploy such systems. As such, there is this opportunity and if

done properly increases the chance of soliciting attacker activity in addition to the

automated worms and botnets.

One of the most active research groups contributing to the technology of

honeypots is The Honeynet Project [9]. This project has grown into a community of

organizations dedicated to learning about attacks, tools, and attacker motives. But as the

honeynet technology advances, so do attackers’ abilities. In a counterfeit issue of an

online hacker periodical, one of the Honeynet Project’s data-capture tools, Sebek was

criticized. Although the periodical was a hoax, some noteworthy points are made, such

as that honeynet technology can be detected. In a rebuttal article [10] the author points

out that honeynet technology is continually improved with the advancement of

countermeasures by hackers, since there are counter-countermeasures. In regards to

detection, “the action of checking for a honeypot can give a detectable signature, leading

to new, more specific techniques for detection”[10].

11

III. TESTBED SETUP, CONFIGURATION, AND RATIONALE

This chapter details the hardware, software and layout of the honeypot network

("honeynet") used in collecting data, and the problems encountered in setting up the

experiment. Also discussed is the general layout and configuration of the School’s

network.

A. EXPERIMENT SPECIFICATION
We deployed a high-interaction honeypot, setting up a small network of

computers. An IP address was registered from SBC Internet Services so that direct

connection to the Internet was possible.

1. Hardware Specification
Three computers were provided in the experiment and were networked together

via crossover cable. The other computers, as indicated in Figure 3, were virtual

computers implemented inside one specific computer running special software. Each

computer was specifically tasked and labeled. The resulting network comprised of the

Router, the Honeypot, and the Data-Capture computers. The Router’s purpose was to act

as the portal from the outside world to the Honeypot while collecting data. Therefore we

installed three network interface cards (NICs). The NIC connecting to the Internet was

set to promiscuous mode so that packets could be sniffed. The remaining two NICs

connected the other machines. One NIC was designated to the Honeypot, while the other

transferred data to the Data-Capture machine. The Honeypot machine served as the

sacrificial information resource which solicited attacks. The deployment of the Honeypot

included running a virtual network of two computers with various services. The Data-

Capture computer served to log and to store the captured data. The hardware

specifications of each system are listed in Table 2.

12

Router
(Dell Dimension XPS B933)

Processor Intel Pentium III - 933Mhz
Storage Maxtor (Ultra ATA) - 20.4GB

Memory 512 MB
NIC Davicom Semiconductor 21x4x DEC Tulip- Compatible 10/100Mbps

3Com 3C905C-TX Fast EtherLink 10/100Mbps
3Com 3C90SC-TX Fast EtherLink 10/100Mbps

Drives DVD-Rom, CD-RW, Zip, Floppy

Honeypot
(Dell OptiPlex GX520)

Processor Intel Pentium 4 - 2.80GHz
Storage (Serial ATA) - 40GB

Memory 1024 MB
NIC DELL NetXtreme BCM5751 Gigabit Ethernet PCI Express (integrated)

Drives CD-RW, Floppy

Data-capture
(Gateway)

Processor Intel Pentium 4 - 1.80GHz
Storage Western Digital (Ultra ATA) - 40GB

Maxtor (Ultra ATA) - 40GB
Memory 256 MB

NIC EthernExpress Pro/100 VE (integrated)
Drives CD-RW, Floppy

Table 2. Experiment Hardware Specification

2. Software Specification
SUSE Linux 10 was installed on each computer. Other software was added in

accordance to the task of each computer. Installed on the Router machine is the

intrusion-detection system, Snort 2.4.3, Apache Webserver, and Basic Analysis and

Security Engine (BASE). The intrusion-detection system or Snort sensor serves to sniff

inbound and outbound traffic to the honeypot and to send any captured data to the Data-

Capture machine. Apache Webserver is an open-source Web server needed to run

BASE. BASE is an application that provides a web front-end to query and analyze the

alerts coming from Snort. Installed on the Honeypot box was VMware Workstation 5.5.

VMware is a commercial software that allows for the creation and execution of multiple

13

operating systems simultaneously on a single physical machine [11]. Using VMware

allowed for the option of growing our network into a more extensive honeynet. Since we

were limited to one machine, VMware allowed us to do so, simulating two additional

operating systems.

The initial environment on the Honeypot had one guest operating system installed

on the VMware, Microsoft Windows 2000 Advanced Server with Service Pack 4, the

most recent Service Pack. We opted to use Service Pack 4 because we realized that

Service Pack 1 was too vulnerable to autonomous agents such as bots and worms. We

wanted our high-interaction honeypot to appear more like a legitimate network on which

system administrators would install the latest service patch and updates. We also

installed a Windows XP Professional with Service Pack 2, upgrading our honeypot to a

honeynet. Services running on Windows 2000 Server included Internet Information

Service (IIS) 5.0, FTP and Telnet. Internet Information Services is Microsoft’s Web

server application which provides users with a manageable and scalable Web application

infrastructure [12]. Our setup contained a simple Web page consisting of photographs. In

addition, we added a shared folder and placed text files and word documents inside. One

group and two users were added to each of the Windows machine. We also installed

AOL Instant Messenger (AIM), is a free instant messaging service on our Windows XP

machine. We setup an account and configured AIM to start at boot-up.

The Data-Capture box was purposely segregated on a separate subnet than that of

the Honeypot. Information obtained from the Router was directed to the Data-Capture

box and stored on a database. We used PostgreSQL 8.1.1, an open-source relational

database system. Rather than log alerts into files, we anticipated a high volume of traffic

and therefore wanted the ability to easily access and view in real time the captured data.

Using a database provided us with the categorization and querying benefits needed to

efficiently filter the output to suit our needs. By using the database plug-in made

available by the Snort intrusion-detection system, alerts are quickly “sorted, searched and

prioritized in an organized manner” [13]. Presented in Figure 3 is an overview of the

database structure and their relationships. Most tables include just the primary-keys field.

There are additional fields not shown for each table.

14

Figure 3. Snort Database Structure [13]

The event table is the main focus of the database structure. It represents the meta-

data of all detected alerts captured from our Router to and from our Honeypot machine.

The signature and sig_class tables are also important in determining the type of

signatures and classifications of each alert.

The software specifications of each system are listed in Table 3.

Router - SUSE Linux 10
Primary Goal sniff traffic, send capture data to Data-Capture machine

Software Snort 2.4.3 - (intrusion-detection system)
Basic Analysis and Security Engine (BASE) - (web front-end to
query and analyze the alerts coming from a Snort)
Apache - (webserver)

Honeypot - SUSE Linux 10
Primary Goal honeypot, solicit attacks

VMWARE Workstation 5.5 running
 Windows 2000 Advanced Server with SP4 and
 Windows XP Professional with SP2

Data-Capture - SUSE Linux 10
Primary Goal store Snort data

PostgreSQL 8.1.1 - (database)
Table 3. Experiment Software Specification

15

3. Network Configuration
The Naval Postgraduate School provided an Internet connection outside the

School’s firewall. By putting our network outside the firewall, we hope to see more

attacks while protecting the School's internal network. The Router machine contains

three NICs. One NIC is connected to the Internet. The second NIC connects from the

Router to the Honeypot machine. The third NIC connects to the Data-Capture machine.

The Honeypot and Data-Capture machines are on separate subnets. The network

configuration is presented in Figure 4.

Figure 4. Experiment Network Configuration

16

4. Problems Encountered
Problems and issues were caused by limited resources and a lack of

familiarization with Linux and the other applications. Much of the hardware was

scrounged from obsolete computers retired from the computer-science and software-

engineering departments. We were able to cull various parts such as hard drives, RAM,

and NICs to build two functional computers. We decided to dedicate the newer and

fastest computer to the Honeypot because of the need to run VMware and to use the other

computers to route and collect data.

We also had to scrounge for software. Our choices were between using retired

software and shareware. Through the generosity of the networking group of the Naval

Postgraduate School we were able to obtain a copy of Microsoft Windows 2000

Advanced Server. Other software such as SUSE Linux 10, Snort 2.4.3 and PostgreSQL

were open-source. We had originally installed Redhat Linux 9.0 on the two older

computers but ran into a strange error message when attempting to install this version of

Linux onto the newest computer. After doing some research, we discovered that the

newer computer included a serial-ATA (SATA) hard drive that was not compatible with

the older Linux kernels. Online advice suggested that we use a newer Linux kernel and

therefore we obtained a copy of SUSE Linux 10 and re-installed. This led to our next

problem. We originally attempted to install VMware 5.0 onto our Honeypot but realized

that version 5.0 was not supported on SUSE Linux 10. Fortunately, we were able to

upgrade to VMware 5.5 and completing the installation onto the Linux box was

unproblematic.

A significant part of this project was in learning to use Linux. For those trained on

Windows where much installation and configuration is aided with GUI, Linux initially

was intimidating. Installation of a program was no longer double clicking an executable,

but understanding the commands "configure", "make", and "make install". In addition,

Linux meant a world of dependencies and more often than not, installing a program

meant finding, downloading, and installing several other programs or libraries. There

was a learning curve.

17

B. THE SCHOOL NETWORK
The School’s network layout and specification is far more complex since it must

support nearly 1,500 students and over 600 faculty and staff members.

1. Hardware/Software Specification
The NPS network serves to connect students, educators and staff both internally

and externally to the Internet. There are numerous hardware equipment including

workstations, servers, and printers disbursed throughout the campus. Most faculty and

staff have their own workstation running various operating systems like Microsoft

Windows and/or a UNIX variant. In addition, the academic buildings provide students

with laboratories running Microsoft Windows in which to complete assignments and

research. Various software is installed at each laboratory on each workstation.

The School deploys two intrusion-detection systems, StealthWatch and Snort.

We are concerned here only with the captured data from Snort. Currently, there are two

Snort sensors. Sensor 1 is placed in front of the firewall, capturing all packets bound to

the school, whether blocked or allowed by the firewall. The other sensor is placed behind

the firewall, monitoring internal traffic. Sensor 2 captures all allowed inbound traffic and

all blocked or allowed outbound traffic. Both sensors record successful connection,

therefore some events are logged twice. All captured data is sent to a secure server

running Microsoft SQL Server 2000 database.

To obtain the School’s captured data, we created an ODBC connection. Open

Database Connectivity (ODBC) is an application programming interface that provides

access to various types of databases. The School provided our research with read-only

access to the SQL Server database storing the Snort data. (See section C of Appendix B

for detail instructions on how to create an ODBC connection.)

2. Network Configuration

Figure 5 is an overview of the School’s network configuration. The captured data

provided to us by the school is from Snort sensor 1.

18

Figure 5. School’s Network Configuration

3. Problems Encountered
At the time of our experiment setup, the NPS Network Security Group was going

through some major changes. The change that affected our research was the staff change

involving the lead security engineer. His insight and expertise was pivotal in

19

understanding the network layout and resolving most of our issues in a timely manner.

Shortly after his departure from NPS, the server containing all the archival Snort data

crashed. The server was sent to a data recovery facility; three months later, we were

informed that the data could not be recovered from the server. The Network Security

Group then put much effort into rebuilding the server and reinstalling and reconfiguring

Snort. During the time of this writing, about two weeks of data was accumulated,

although we would have liked more. This data is used in our analysis.

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

IV. DATA RESULTS AND EVALUATION

A. HONEYPOT DATA ANALYSIS
Collection of suspicious-event data from our honeypot was done January 29, 2006

through March 18, 2006. The alerts were collected daily and then accumulated on a

week-by-week basis, starting from Sunday and ending on Saturday. The last two weeks

are the only period with an overlap to data of the School’s network. The metrics used in

our analysis is presented in Table 4.

Metrics Used in Honeypot
Distribution of Alerts over Collection Period
Distribution of Alerts by Week
Distribution of Alerts by Hour
Distribution of Classification
Distribution of Signatures

Table 4. Metrics Used in Honeypot Analysis

1. Distribution of Alerts

a. Alerts over Entire Collection Period
We first show the distribution of alerts over the entire seven week

experiment in a time plot. Figure 6 represents all the generated alerts triggered and

recorded by our Data-Capture machine for a given day. The number of alerts varied

widely, especially during the first half of the collection period with spikes on January

31st, February 6th, and February 22nd of 8,987, 11,381, and 11,067 respectively. In the

latter half of the collection period the alerts appear to subside but again spike on March

5th and March 9th, with 3,786 and 4,516 alerts respectively. This plot provides us with a

good sense of the volatility of the Internet and the incoming alerts, and in particular its

non-Poisson “bursty” nature. This unpredictability makes expressing the probability of a

number of alerts for a fixed time unfeasible.

22

Distribution of Alerts
(Jan. 29 - Mar. 18)

0

2000

4000

6000

8000

10000

12000

1/29 1/31 2/2 2/4 2/6 2/8
2/10 2/12 2/14 2/16 2/18 2/20 2/22 2/24 2/26 2/28 3/2 3/4 3/6 3/8

3/10 3/12 3/14 3/16 3/18

Day

N
um

be
r

of
 A

le
rt

s

Figure 6. Honeypot Time Plot of Distribution of Alerts

b. Alerts Compared by Week
Based on the tabulations of Table 5, we present boxplots of each week as

shown in Figure 7. Here, we are provided with a measure of the spread of the middle

50% of the alerts for each week. Easily notable are the extreme values presented in the

boxplot. The maximum number of alerts are the outliers for the weeks presented. In

addition, the interquartile ranges (IQR) of week 2 and week 4, (4,873 and 3,981

respectively) about nearly double over the other weeks. This is an indication of less

consistency for those particular weeks. Something else apparent is that the alerts seem to

be subsiding in the latter half of the collection: From week 4 on, there are fewer alerts

reported. Looking at the boxplot, there is a dotted line running over the spread of the

alerts. The distribution is skewed to the right indicating that the majority of alerts came

in the beginning of our collection period and has lessened towards the end.

23

1/29-2/04 2/05-2/11 2/12-2/18 2/19-2/25 2/26-3/04 3/05-3/11 3/12-3/18
Week1 Week2 Week3 Week4 Week5 Week6 Week7

Q1 569 2,782 679 307 288 436 231
Minimum 419 2,357 272 250 159 331 167

Median 865 5,389 1,022 923 327 778 314
Maximum 8,987 11,381 1,950 11,067 2,758 4,516 1,118

Q3 1,353 7,655 1,362 4,288 716 2,733 438
IQR 784 4,873 683 3,981 428 2,298 207

Mean 2,016 5,714 1,046 3,061 750 1,709 419
Table 5. Honeypot: Summary of Numbers of Snort Alerts

BoxPlot by Week

0

2,000

4,000

6,000

8,000

10,000

12,000

Week1 Week2 Week3 Week4 Week5 Week6 Week7

Week

N
um

be
r

of
 A

le
rt

s

Q1
Minimum
Median
Maximum
Q3

Figure 7. Honeypot Box Plot by Week

c. Alerts by Hour

Of interest are the alerts generated at specific times in the day. In Figure 8

we display the number of alerts generated each hour for a seven-day period for each of

the weeks in our collection. We notice the irregularities of the incoming alerts. Each

week has at least one significant spike. In at least five of the seven weeks, there are

spikes early in the day. For example, in the first three weeks, spikes occurred at the 10

and 6 o’clock hours. With the exception of the week of Feb. 26, alerts subside in the

latter hours of the day, which suggests that most attackers are in North America or that

attacks from zombie computers are local. This also suggests that the attacks are probably

24

not real attackers or even script kiddies. Attacks at a constant and specified time indicate

that they are more likely automated botnets or scanners.

Distribution of Alerts by Hour
(Jan.29 - Feb.04)

0
1000
2000
3000
4000
5000
6000
7000
8000

0:00 2:00 4:00 6:00 8:00
10:0

0
12:0

0
14:0

0
16:0

0
18:0

0
20:0

0
22:0

0

N
um

be
r

of
 A

le
rt

s

Distribution of Alerts by Hour
(Feb.05 - Feb.11)

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0:00 2:00 4:00 6:00 8:00
10:0

0
12:0

0
14:0

0
16:0

0
18:0

0
20:0

0
22:0

0

N
um

be
r

of
 A

le
rt

s

Distribution of Alerts by Hour
(Feb.12 - Feb.18)

0
200
400
600
800

1000
1200
1400

0:00 2:00 4:00 6:00 8:00
10:0

0
12:0

0
14:0

0
16:0

0
18:0

0
20:0

0
22:0

0

N
um

be
r

of
 A

le
rt

s

Distribution of Alerts by Hour
(Feb.19 - Feb.25)

0

500

1000

1500

2000

2500

0:00 3:00 6:00 9:00
12:0

0
15:0

0
18:0

0
21:0

0

N
um

be
r

of
 A

le
rt

s

Distribution of Alerts by Hour
(Feb.26 - Mar.04)

0
100
200
300
400
500
600
700
800
900

0:
00

2:
00

4:
00

6:
00

8:
00

10
:0

0

12
:0

0

14
:0

0

16
:0

0

18
:0

0

20
:0

0

22
:0

0

N
um

be
r

of
 A

le
rt

s

Distribution of Alerts by Hour
(Mar.05 - Mar.11)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0:00 2:00 4:00 6:00 8:00
10:0

0
12:0

0
14:0

0
16:0

0
18:0

0
20:0

0
22:0

0

N
um

be
r

of
 A

le
rt

s

Distribution of Alerts by Hour
(Mar.12 - Mar.18)

0

200

400

600

800

1000

0:00 2:00 4:00 6:00 8:00
10:0

0
12:0

0
14:0

0
16:0

0
18:0

0
20:0

0
22:0

0

N
um

be
r

of
 A

le
rt

s

Figure 8. Honeypot Alerts by Hour per Week

25

2. Distribution of Classification
All Snort alert rules are given a classification. Our honeypot data included

sixteen of the classifications presented in Table 6 which are highlighted in yellow. The

classifications are grouped by priority. The priority number indicates the severity of the

alert, i.e. priority 1 being the most severe. For more detail on the alerts classification per

week, please see Appendix C.

26

 Critical Classification (Priority 1)
Classtype or name Brief Description
attempted-admin attempted administrator privilege gain
attempted-user attempted user privilege gain
shell-code-detect executable code was detected
successful-admin successful administrator privilege gain
successful-user successful user privilege gain
trojan-activity a network Trojan was detected
unsuccessful-user unsuccessful user privilege gain
web-application attack web application attack

 Intermediate Classification (Priority 2)
Classtype or name Brief Description
attempted-dos attempted dos
attempted-recon attempted information leak
bad-unknown potentially bad traffic
denial-of-service detection of dos attack
misc-attack miscellaneous attack
non-standard-protocol detection of nonstandard protocol or event
rpc-portmap-decode decode of an RPD query
successful-dos denial of service
successful-recon-largescale large-scale information leak
successful-recon-limited information leak
suspicious-filename-detect a suspicious filename detected
suspicious-login an attempted login using a suspicious username was detected
system-call-detect a system call was detected
unusual-client-port-connection a client was using an unusual port
web-application-activity access to potentially vulnerable Web application

 Low-Risk Classification (Priority 3)
Classtype or name Brief Description
icmp-event generic ICMP event
misc-activity miscellaneous activity
network-scan detection of network scan
not-suspicious not suspicious traffic
protocol-command-decode generic protocol command decode
string-detect a suspicious string was detected
unknown unknown traffic

Table 6. Snort Alert Categories [5]

Figure 9 shows the frequency of alerts generated in each classification for the

collection period. The most common classification with 65.8% is protocol-command-

decode. These generated alerts or signatures are particular to NetBIOS Name Service, in

27

which packets are designated for NetBIOS TCP and UDP ports 135-139. Our honeynet

runs Windows 2000 Advanced Server and Windows XP where NetBIOS over TCP/IP is

enabled. With the numerous vulnerabilities associated with NetBIOS, we expect a high

volume of this class of attacks.

Frequency of Classification
(Jan.29 - Mar.18)

0.0%
0.1%
0.0%

8.5%
0.0%

65.8%
2.6%
3.7%

0.5%
0.3%

5.8%
8.8%

3.6%
0.1%
0.2%
0.0%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0%

non-standard-protocol
attempted-recon

rpc-portmap-decode
misc-activity

attempted-dos
protocol-command-decode

bad-unknown
misc-attack

web-application-attack
web-application-activity

attempted-admin
unsuccessful-user
shellcode-detect

attempted-user
network-scan

successful-admin

C
la

ss
ifi

ca
tio

n
N

am
e

(AlertsByClass ÷Total#OfAlerts)

Figure 9. Honeypot: Frequency of Classification

Figures 10 and 11 show the frequency of alerts generated in each classification by

week. Figure 10 displays the major classifications that generated alerts per week.

Despite the big spike in alerts with protocol-demand-code, we see a constant oscillation

from week to week. Figure 11 is the same graph with the protocol-command-code

removed. Classifications such as unsuccessful-user and network-scan remained constant

throughout, while shellcode-detect and misc-attack showed an increase over time.

Network-scan is part of the Internet noise that is constantly occurring. Attacks that we

are more concerned with and have higher priorities are the shellcode-detect and misc-

attack. The shellcode-detect is a detection of an executable code. There are numerous

28

malicious codes that spread through exploitation of vulnerable services. Once these

vulnerable services are known, we see an increase of malicious code targeting our

honeynet.

Distribution of Classification Relative to Weekly Alert
(Jan.29 - Mar.18)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

wk1 wk2 wk3 wk4 wk5 wk6 wk7

A
le

rt
s /

 #
of

A
le

rt
sT

ha
tW

ee
k

attempted-recon

misc-activity

protocol-
command-decode
bad-unknown

misc-attack

web-application-
attack
web-application-
activity
attempted-admin

unsuccessful-user

shellcode-detect

d
Figure 10. Honeypot: Alert Class Percentage over Time

Distribution of Classification Relative to Weekly Alert
(without protocol-command decode)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

wk1 wk2 wk3 wk4 wk5 wk6 wk7

A
le

rt
s

/ #
of

A
le

rt
sT

ha
tW

ee
k

attempted-recon

misc-activity

bad-unknown

misc-attack

web-application-
attack
web-application-
activity
attempted-admin

unsuccessful-user

shellcode-detect

attempted-user

network-scan
Figure 11. Honeypot: Alert Class Percentage without Protocol-Command Decode.

29

3. Distribution of Signatures
Seventy-eight different Snort alerts (signature matchings) were generated over the

collection period. The alerts can be grouped into Snort categories, as for example all

ICMP signatures such as ICMP PING Windows, ICMP PING *NIX, ICMP trace route,

etc. were grouped into the category of ICMP signatures. Figure 12 shows the frequency

of signature classes over our entire collection period. The most common category are

NETBIOS signatures. We expect that with typical packet traffic there are certain alerts

that occur more often than others.

Frequency of Alert Category

80.8%

5.4%

0.2%

0.1%

1.0%

3.4%

0.1%

3.9%

3.1%

2.2%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

NETBIOS

MS-SQL

SCAN

SNMP

WEB

SHELLCODE

POLICY

BADTRAFFIC

INFOFTP

ICMP

Si
gn

at
ur

e
C

at
eg

or
y

(AlertsBySignature ÷Total#OfAlerts)

Figure 12. Honeypot: Frequency of Alert Signature Category

Figure 13 shows the individual frequency of alert-signature categories. The

percentage was calculated by totaling the alerts in a category and dividing by the total

number of alerts that week. Both MS-SQL and SHELLCODE signatures show an

increase in alerts over the weeks. ICMP and SNMP signatures show a significant spike

in week 5 and then suddenly drop, suggesting they are due to different attackers than the

other attacks. The WEB and NETBIOS signatures both oscillate.

30

MS-SQL Signatures

0
0.05

0.1
0.15

0.2
0.25

0.3

wk1 wk2 wk3 wk4 wk5 wk6 wk7

SHELLCO DE Signature

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

wk1 wk2 wk3 wk4 wk5 wk6 wk7

SCAN Signatures

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

wk1 wk2 wk3 wk4 wk5 wk6 wk7

PO LICY Signature

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

wk1 wk2 wk3 wk4 wk5 wk6 wk7

ICMP Signatures

0

0.01

0.02

0.03

0.04

0.05

0.06

wk1 wk2 wk3 wk4 wk5 wk6 wk7

SNMP Signatures

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

wk1 wk2 wk3 wk4 wk5 wk6 wk7

BAD-TRAFFIC Signature

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

wk1 wk2 wk3 wk4 wk5 wk6 wk7

INFO FTP Signature

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

wk1 wk2 wk3 wk4 wk5 wk6 wk7

31

WEB Signatures

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

wk1 wk2 wk3 wk4 wk5 wk6 wk7

NETBIOS Signature

0

0.2

0.4

0.6

0.8

1

wk1 wk2 wk3 wk4 wk5 wk6 wk7

Figure 13. Honeypot: Individual Frequency of Alert Signature Categories

In our initial analysis, using only a 26 day period, we compared data from the first

13 days with that of the last 13 days. We use clustering to process each new alert by

considering all identical alerts within a 10 minute or less as one single event. Clusters

greatly reduce the effect of one attacker repeatedly trying the same thing. Table 7 shows

raw alerts and clustered generated for each of the snort alert class. As with the MS-SQL

graph from Figure 13, we see an increase in raw alerts as well as an increase in clusters.

Table 7 further breaks down the Web signatures. We see that WEB-PHP alerts increase

while WEB-IIS, WEB-ATTACKS, WEB-FRONTPAGE, and WEB-MISC decrease.

The initial analysis is an indication that our honeypot and its vulnerabilities are being

recognized and thus attack behavior is adjusting accordingly.

32

1/23 - 2/5 2/6 - 2/19

Snort Alert Class Raw Count

Time-
Clustered

Count Raw Count

Time-
Clustered

Count
NETBIOS 11,491 451 38,100 463
BAD-TRAFFIC 1,854 409 2,274 418
MS-SQL 1,377 1,095 1,647 1,260
INFO 14 7 2,713 6
SHELLCODE 1,212 420 880 275
ICMP 545 124 952 121
WEB-PHP 104 12 215 22
WEB-CGI 98 25 97 25
WEB-IIS 19 16 135 9
WEB-ATTACKS 30 9 0 0
WEB-FRONTPAGE 4 2 0 0
WEB-MISC 15 7 2 2
SCAN 23 25 33 24
POLICY 14 13 19 17
EXPLOIT 20 4 3 3
SNMP 6 3 6 3
ATTACK-RESPONSES 1 1 0 0

Table 7. Snort Alert Counts by Type Compared for Two Successive 13-day
Periods.[14]

B. SCHOOL NETWORK DATA ANALYSIS

Collection of suspicious-event data from our school’s firewall was done March 2,

2006 through March 18, 2006. The alerts were collected daily and then accumulated.

Only alerts from sensor 1 were collected, which sits outside the school’s firewall and

captures all inbound/outbound traffic blocked or allowed by the firewall. Alerts

generated from sensor 1 will therefore capture any potential attacks.

1. Distribution of Alerts

a. Alerts over Entire Collection Period
We first show the distribution of alerts over the ten day period in a time

plot. Figure 14 represents all the generated alerts triggered and recorded by sensor 1 for a

given day. The number of alerts varied widely, especially during the first few days

33

because the NPS Networking Group was still in the process of tuning their Snort sensor.

In addition there were no alerts collected for the days of March 11th and 12th, and only

partial data on March 10th, 13th, and 18th.

Distribution of Alerts

(Mar.2 - Mar.18)

0

10000

20000

30000

40000
50000

60000

70000

80000

90000

3/2
/06

3/3
/06

3/4
/06

3/5
/06

3/6
/06

3/7
/06

3/8
/06

3/9
/06

3/1
0/0

6

3/1
1/0

6

3/1
2/0

6

3/1
3/0

6

3/1
4/0

6

3/1
5/0

6

3/1
6/0

6

3/1
7/0

6

3/1
8/0

6

Day

N
um

be
r

of
 A

le
rt

s

Figure 14. School: Time Plot of Distribution of Alerts

b. Alerts by Hour
In Figure 15, we display the number of alerts generated each hour for the

ten-day period. All alerts for the ten days were summed by the hour. There are two

meaningful spikes, one at 10:00 and one at 4:00 o’clock. These suggest that most

attackers are on Pacific Standard Time.

34

Distribution of Alerts By Hour
(Mar.02 - Mar. 18)

0

5000

10000

15000

20000

25000

30000

35000

0:0
0

2:0
0

4:0
0

6:0
0

8:0
0

10
:00

12
:00

14
:00

16
:00

18
:00

20
:00

22
:00

N
um

be
r

of
 A

le
rt

s

Figure 15. School: Alerts by Hour

2. Distribution of Classification
Figure 16 shows the distribution of classifications accumulated over the ten-week

period. Web-application-activity and bad-unknown are the most frequent occurring

classifications.

35

Frequency of Classification
(Mar.2 - Mar.18)

8.013%
25.902%

0.000%
6.796%

14.355%
2.219%

8.792%
13.168%

7.831%
0.076%
0.015%
0.070%
0.000%

0.895%
0.000%
0.048%

1.038%
4.756%
5.048%

0.001%
0.018%

0.924%
0.001%
0.015%
0.017%
0.001%

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0%

attempted-admin
bad-unknown
misc-activity

shellcode-detect
web-application-activity

suspicious-filename-detect
attempted-user

attempted-recon
kickass-porn

system-call-detect
string-detect
misc-attack

network-scan
misc-activity

unknown
protocol-command-decode

attempted-dos
policy-violation

unknown
trojan-activity

unusual-client-port-connection
web-application-attack

successful-admin
rpc-portmap-decode

default-login-at tempt

C
la

ss
ifi

ca
tio

n
N

am
e

Figure 16. School: Frequency of Alert Classification

3. Distribution of Signatures
One-hundred and forty-two different alerts in 23 categories were generated over

the collection period. Figure 17 shows the distribution of alert (signature) categories.

Since alerts are being generated by both inbound and outbound connections, we are

seeing a variety of categories not witnessed in the honeypot data. The frequency of

signature categories is related to type of network and the users of this network. In our

case, the users of this network are students; therefore increased traffic is seen in WEB

and INFO-FTP. Other interesting signature categories include PORN and P2P. P2P type

signatures are software applications for peer-to-peer sharing of data. Specifically, the

School’s data shows signatures of popular two popular music sharing software,

“Gnutella” and “Kazaa.”

36

Frequency of Alert Signature Category
(Mar.2 - Mar.18)

0.1%
3.8%

0.0%
0.0%

21.8%
5.9%

0.0%
0.8%

0.0%
8.5%

35.3%
0.0%
0.0%

1.1%
3.4%

1.0%
0.0%
0.0%

5.1%
0.7%

0.2%
0.0%

2.4%

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0%

DDOS
DNS

ICMP
IMAP

INFO FTP/CONNECTION
ATTACK-RESPONSES

FTP
CHAT

EXPLOIT
PORN

WEB
MISC

MS-SQL
MULTIMEDIA

P2P
POLICY

RPC
SCAN

SHELLCODE
SMTP
SNMP

TFTP
VIRUS

Si
gn

at
ur

e
C

at
eg

or
y

Figure 17. School: Frequency of Alert Signature Category

C. COMPARISON OF HONEYPOT DATA TO REAL NETWORK DATA
We did not see any significant similarities between the honeypot and the school’s

firewall data. This suggests that attackers recognize the two sites as quite different and

use different attacks against each. In fact, some categories seemed to be negatively

correlated, suggesting that attackers are less likely to launch a particular attack on one

site if they are already doing it on the other. A notable missing category from the

school’s data is NETBIOS. Because of the large number of alerts generated in this

category, the school chose to comment out the rule from their Snort configuration file, i.e.

not to generate any alerts for incoming packets matching the NETBIOS rules. Thus we

cannot say whether NETBIOS attacks are similar on the two sites.

37

V. CONCLUSION AND FUTURE WORK

A. CONCLUSION
In both the honeypot and school’s network, there is much randomness to the

alerts. Despite the noise, we did observe a definite decrease in the number of alerts on

our honeypot over the weeks, and no decrease on the school’s firewall in some of the

same time period. It appears that after the tuning is complete on a honeypot and the

deployment is stabilized, i.e. there is no missing data, that there will be a decrease in

alerts. We conclude that after the initial probing and reconnaissance is complete, the

vulnerabilities of the honeypot are learned and therefore fewer alerts occur; but more

specific signatures are then aimed at exploiting the honeypot. Of course, the Networking

Security Group is constantly monitoring their alerts; if vulnerabilities are found, the

administrators quickly remedy this breach and therefore, there is stabilization with the

number of alerts.

B. FUTURE WORK
A goal of this thesis was to develop a methodology for obtaining statistics about

cyber-attack trends over time. Therefore, future work should include running and

monitoring of the honeynet system for a longer period of time. In addition, as attackers,

automated worms, botnets, and auto-rooters evolve, honeypot architecture must also

evolve in its installation and configuration. We must also anticipate that the honeynet’s

IP address and its associated architecture, its operating system, and its services will be

learned. After sufficient data has been collected with the previous setup, a fresh and

dissimilar architecture should be deployed. Differences in architecture should include

changes in the number of operating systems, types of operating systems, and types of

services. Again, this newer deployment should be monitored for a long period of time.

Another goal of the thesis was to present a comparative analysis of the honeypot

data with that of the School’s network data. Much more can be extracted and compared,

in particular because we had limited data from the School.

Finally, we identify issues that could aid in the advancement of honeynet

research:

38

1. Extract more metrics on alerts such as, IP source address, source and

destination port numbers, time-to-live values, and types of protocols, and

calculate statistics on these.

2. Develop a more efficient way of automatically consolidating, clustering,

and analyzing extracted data.

3. Develop and implement methods to adjust the honeypot data with the

School’s data in the same time period.

4. Using different configurations, try to prove what clues attackers are

responding to during reconnaissance of a honeypot.

.

39

APPENDIX A. STARTUP INSTRUCTIONS

A. STEP-BY-STEP STARTUP INSTRUCTIONS
These are the steps required to start the machines used in the experiments reported

in this thesis. First, the three computers must be powered on and connected per the

Testbed Setup. If computers are powered off, power on each computer (i.e. Router,

Honeypot, and Data-Capture), boot into SuSE Linux 10.0, and log on.

1. Instructions for Starting Honeypot Machine
Once logged onto the Honeypot, perform these instructions to start VMware and

power on the virtual honeynet environment.

1) Open terminal.

2) At prompt issue command: vmware.

3) Select Windows 2000 Advanced Server in the Favorites pane on the

left of the workstation window.

4) Click on Power on this virtual machine.

5) Select Windows XP Professional 2 in the Favorites pane on the left of

the workstation window.

6) Click on Power on this virtual machine.

2. Instructions for Starting Data-Capture Machine
Once logged onto the Data-Capture machine, perform these instructions to start

PostgreSQL database server.

1) Open terminal.

2) Change directory by issuing command: cd /etc/init.d.

3) Start PostgreSQL by issuing command: ./postgres start.

(Optional) These instructions allow users to log onto terminal-based front end to

PostgreSQL. Once logged in, users have the option to type in queries interactively to

PostgreSQL and see the query results.

 1) Open terminal.

40

 2) Change directory by issuing command:

 cd /usr/local/postgres-8.1-1/bin/.

 3) To login into database issue command:

 ./psql –h /var/tmp –U <username> <name of database>.

 4) Type in appropriate password when prompted: <password>.

3. Instructions for Starting Router Machine
Once logged onto the Router, perform these instructions to download the latest

rule set and start Snort 2.4.3.

1) Open terminal.

2) Change directory by issuing command: cd /etc/cron.daily.

3) Run oinkmaster script by issuing command: ./oinkmaster.

4) Change directory by issuing command: cd /etc/rc.d.

5) Start Snort 2.4.3 by issuing command: ./snort start.

 (Optional) These instructions allow users to remotely log onto terminal-based

front-end to PostgreSQL. Once logged in, users have the option to type in queries

interactively, issue them to PostgreSQL, and see the query results.

 1) Open terminal

 2) Change directory by issuing command:

 cd /usr/local/postgres-8.1-1/bin/

 3) To login into database issue command:

 ./psql –h 10.0.0.10 –U <username> <name of database>

 4) Type in appropriate password when prompted: <password>

(Optional) These instructions start Apache web server and Basic Analysis and

Security Engine (BASE).

 1) Open terminal.

41

 2) Change directory by issuing command: cd /etc/init.d.

 3) Start Apache web server by issuing command: ./apache2 start.

 4) Open web browser.

 5) In the Location bar type: http://localhost/base/base_main.php.

42

THIS PAGE INTENTIONALLY LEFT BLANK

43

APPENDIX B. DETAILS OF LAB EXPERIMENT

A. ROUTER CONFIGURATION
This section details scripts, files and directories associated with Snort 2.4.3,

Apache webserver, BASE, and PostgreSQL. Included with each section are the

additional options of the startup scripts.

1. Details of Necessary Files
Name of File Location Description
*.rules /usr/local/snort/rules Text files of Snort rules
apache2 /etc/init.d Shell script to run Apache webserver
base_main.php /srv/www/htdocs/base Main web page of BASE

oinkmaster /etc/cron.daily

Shell script to read Oinkmaster
configuration file, download latest ruleset,
unpack and apply any changes to snort rule
directory

oinkmaster.conf /etc/oinkmaster.conf Oinkmaster configuration file

oinkmaster.pl /usr/local/bin/

Original perl script to download latest
ruleset, unpack and apply any changes;
requires additional parameters, e.g. location
of Oinkmaster configuration file and
location of snort rules

psql /usr/local/postgres-8.1-1/bin
Executable for PostgreSQL interactive
terminal

snort /usr/local/snort/bin Executable for Snort
snort.conf /usr/local/snort/rules Snort configuration file
snort.pl /etc/rc.d Script to start/restart/stop/reload Snort

Table 8. Essential Files of the Router Machine

2. Options and Details for Apache Script

Other parameters can be passed to the Apache script. Users must change

directory to /etc/init.d and issue the following command, ./apache2, to view additional

options. The basic commands required to start and stop the webserver are as follows:

• Start Apache: ./apache2 start.

• Stop Apache: ./apache2 stop.

3. Options and Details of Oinkmaster Script

44

For more information on using Oinkmaster, please reference,

http://oinkmaster.sourceforge.net/. The shell script located in /etc/cron.daily is the basic

command to run the Oinkmaster Perl script. The -o <directory> is a required argument.

The downloaded files are compared to any existing rules in this directory before

overwriting them.

Oinkmaster Perl script:

--
#!/bin/bash
/usr/local/bin/oinkmaster.pl -o /usr/local/snort/rules/

/usr/bin/killall -HUP snort

--
4. Options and Details of PostgreSQL Interactive Terminal

For additional instructions on accessing the PostgreSQL Interactive Terminal,

please reference, http://www.postgresql.org/docs/8.1/static/tutorial-accessdb.html.

Included in this section are the names of users and the database created for our lab

experiment.

One database was created.

• Name of database: snortdb

Two users were created.

• Super user name: binh

• User with write permission: snortadmin

Example of command to remotely log into database:

./psql –h 10.0.0.10 –U snortadmin snortdb

a. Sending Query Results to a File
 In PostgreSQL Interactive Terminal, use the –o switch to send queries to a

file. When logged on from Router machine, follow the instructions provided below

1) Open terminal.

2) Change directory by issuing command:

45

 cd /usr/local/postgres-8.1-1/bin.

 3) Login into database issuing -o command:

 ./psql -h 10.0.0.10 -U <username> <name of database> -o

<name of file>

 For example,

 ./psql -h 10.0.0.10 -U binh snortdb -o '/root/data/query/test.txt'

4) Once logged in, type in query and results will output to specified file.

This is an example of a query to obtain various information for a given day.

SELECT event.timestamp, signature.sig_sid, signature.sig_priority,
 signature.sig_name, signature.sig_class_id, sig_class.sig_class_name,
 int8ip_to_str(iphdr.ip_src) as ipSrc, int8ip_to_str(iphdr.ip_dst) as ipDest,
 iphdr.ip_ttl, iphdr.ip_proto as ipProtocol, event.cid as eventID

FROM (event INNER JOIN iphdr ON event.cid = iphdr.cid) INNER JOIN
 (sig_class INNER JOIN signature ON sig_class.sig_class_id =
 signature.sig_class_id) ON event.signature = signature.sig_id

WHERE (event.timestamp > '2006-03-09 23:59:24.912-08') AND
(event.timestamp < '2006-03-11 00:00:02.194-08') AND (event.sid = iphdr.sid)

ORDER BY event.timestamp ;

5. Options and Details of Snort Script
Other parameters can be passed to the Snort script. Users must change directory

to /etc/rc.d and issue the following commands to:

• Start Snort: ./snort start

• Restart Snort: ./snort restart

• Stop Snort: ./snort stop

• Reload Snort: ./snort reload

The details of the Snort script reads:

--
#!/bin/bash

46

case "$1" in
 start)

/usr/local/snort/bin/snort -D -i eth0 –c
/usr/local/snort/rules/snort.conf

;;
stop)
/usr/bin/killall snort
;;
restart)
/usr/bin/killall snort
/usr/local/snort/bin/snort -D -i eth0 –c

/usr/local/snort/rules/snort.conf
;;
reload)
/usr/bin/killall -HUP snort
;;
*)
echo "Usage: $0 {start|stop|restart|reload}"
exit 1

esac

--

B. DATA-CAPTURE CONFIGURATION
This section details scripts, files and directories associated with PostgreSQL. For

additional instructions on starting the PostgreSQL database, please reference

http://www.postgresql.org/docs/8.1/static/postmaster-start.html.

1. Details of Necessary Files
Name of File Location Description

pg_ctl /usr/local/postgres/bin
Starting the database server program;
requires additional parameters

postgres.pl /etc/init.d
Script to start/restart/stop/reload
PostgreSQL server program

postgresql.conf /var/pgdata/ Postgresql configuration file

 Table 9. Essential Files of the Data-Capture Machine.

2. Options and Details of PostgreSQL Script

Other parameters can be passed to the PostgreSQL script. Users must change

directory to /etc/init.d and issue the following commands to:

• Start PostgreSQL server: ./postgres start

• Restart PostgreSQL server: ./postgres restart

• Stop PostgreSQL server: ./postgres stop

47

• Reload PostgreSQL server: ./postgres reload

The details of the PostgreSQL server script reads:

--
#!/bin/bash
case "$1" in
 start)
 /bin/su postgres -c "/usr/local/postgres/bin/pg_ctl -D
/var/pgdata/ start"
 ;;
 stop)
 /bin/su postgres -c "/usr/local/postgres/bin/pg_ctl -D
/var/pgdata/ stop"
 ;;
 restart)
 /bin/su postgres -c "/usr/local/postgres/bin/pg_ctl -D
/var/pgdata/ restart"
 ;;
 reload)
 /bin/su postgres -c "/usr/local/postgres/bin/pg_ctl -D
/var/pgdata/ reload"
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|reload}"
 exit 1
esac

--

C. HOW TO SETUP ODBC CONNECTION TO NPS NETWORK
This section details how an ODBC connection was created to access the Snort

data on the NPS network server. We were granted read-only access to three separate

databases: SnortCurrent, Snort8-30, and SnortStatistics. Once logged into the NPS

domain, we setup the connection from a Windows XP computer. The instructions are as

follows:

1) Goto Control Panel-> Adminstrative Tools -> Data Sources (ODBC)

2) From ODBC Data Source Adminstrator screen: Add -> MS Access

Database

3) From New Data Source: SQL Server -> Finish

4) From Data Source to SQL Server:

 Enter name: (e.g. SnortCurrent)

48

 Enter Server: 172.20.48.54 -> Next

5) Enable 'With SQL Server authentication using login ID and password entered

by the user’

 Enter Login ID: <username>

 Enter password: <password>

(NOTE: Request access to database server and verify server ip address with

NPS Network Security Group)

6) Click on Client Configuration button

7) From Edit Network Library Configuration:

 Select: TCP/IP

 Server name: 172.20.48.54

 Port number: 2433

8) Test connection -> Okay

49

APPENDIX C. ADDITIONAL GRAPHS

A. HONEYPOT CLASSIFICATION ANALYSIS
This details the occurrence of an alert by its classification by day for each of the

seven weeks in our study. Figure 13 is the Legend associated with Figures 14 – Figure

20.

Figure 18. Honeypot Classification Legend

50

Frequency of Classification
(Jan.29 - Feb.04)

50%
59%

2%
13%

39%

20%
27%

2%

8%

40%
29%

28%
55%

18%

18%

10%

1% 5%

16%
7%

14%

5%
4%

50% 44%
4%

21%
12%

6%
12%

5%

31%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sun Mon Tue Wed Thr Fri Sat

Fr
eq

ue
nc

y
of

 O
cc

ur
an

ce

Figure 19. Honeypot Classification: Jan. 29 – Feb.

Frequency of Classification
(Feb.05 - Feb.11)

2% 2% 3% 8% 10%
19% 15%

77% 79%
84%

84% 81%
73%

30%

50%

17% 16%
8% 3% 3% 2% 1%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sun Mon Tue Wed Thr Fri Sat

Fr
eq

ue
nc

y
of

 O
cc

ur
an

ce

Figure 20. Honeypot Classification: Feb. 05 – Feb. 11

51

Frequency of Classification
(Feb.12 - Feb.18)

13%

47%

25% 26% 26%
11%

69%

71% 49% 47% 48%
66%

4%

22%

8% 10% 11% 4% 18%5%
10% 9% 10%

13%
6%

12%
4% 4% 2% 3% 9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sun Mon Tue Wed Thr Fri Sat

Fr
eq

ue
nc

y
of

 O
cc

ur
an

ce

Figure 21. Honeypot Classification: Feb. 12 – Feb. 18

Frequency of Classification
(Feb.19 - Feb.25)

59%

21%
5% 2% 8%

35% 25%

54% 85% 86% 75%
5%

17%
9%

26%

19%

11%
6% 9% 10%11%

4%

20% 18%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sun Mon Tue Wed Thr Fri Sat

Fr
eq

ue
nc

y
of

 O
cc

ur
an

ce

Figure 22. Honeypot Classification: Feb. 19 – Feb. 25

52

Frequency of Classification
(Feb.26 - Mar.04)

35%
16%

6%

43%

16% 14%
3%

26%
59%

4%

6% 7%

75%
16%

22%

8%

15%

19%
14%

11%

18%

10%

4%

6%

6%

13%
12%21%

22%

10%

28%

45%

42%

5%

6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sun Mon Tue Wed Thr Fri Sat

Fr
eq

ue
nc

y
of

 O
cc

ur
an

ce

Figure 23. Honeypot Classification: Feb. 26 – Mar. 04

Frequency of Classification
(Mar.05 - Mar.11)

1% 4%
14%

24%

4%
11%

54%

83% 79% 55%

8%

78%
52%

4%

6%
22%

44%

14%
17%

10% 4% 15%

3% 6% 6%

16%
19% 15%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sun Mon Tue Wed Thr Fri Sat

Fr
eq

ue
nc

y
of

 O
cc

ur
an

ce

Figure 24. Honeypot Classification: Mar.05 – Mar. 11

53

Frequency of Classification
(Mar.12 - Mar 18)

23%

6%

25%
20%

14%

33%
21%

7.19%

69.41%

6.56% 18.79%
43.79% 7.43% 32.59%

36%

6%

29%
25%

18%

29%

23%

8%

4%

8%
28%

9%

35%
24%

14%

27%
17%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sun Mon Tue Wed Thr Fri Sat

Fr
eq

ue
nc

y
of

 O
cc

ur
an

ce

Figure 25. Honeypot Classification: Mar.12 – Mar. 18

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

LIST OF REFERENCES

[1] Gordon, Lawerence A, Loeb, Martin P., Lucyshyn, William, and Richardson, Robert,
“2005 CSI/FBI Computer Crime and Security Survey,”
http://www.cpppe.umd.edu/Bookstore/Documents/2005CSISurvey.pdf, accessed March
2006.

[2] The Honeynet Project, Know Your Enemy: Learning about Security Threats, Second
Edition, Boston, MA: Addison-Wesley, 2004.

[3] “Blackhat,” http://en.wikipedia.org/wiki/Blackhat, accessed February 2006.

[4] Jordan, Christopher J., Zhang, Qiang, Royes, Jason, “Determining the Strength of
Decoy System: A Paradox of Deception and Solicitation, Proc IEEE Workshop on
Information Assurance, New York, West Point, pp. 138-145, June 2004.

[5] Beale, Jay et al, Snort 2.1 Intrustion Detection, Second Edition, Rockland, MA:
Syngress Publishing, 2004.

[6] “Lancope’s StealthWatch,” http://www.lancope.com/products/, accessed February
2006.

[7] “Snort, the De Facto Standard for Intrusion Detection/Prevention,”
http://www.sort.org, accessed March 2006.

[8] The Honeynet Project, “Know Your Enemy: Honeynets, What a honeynet is, its
value, and risk/issues involved,” http://www.honeynet.org/papers/honeynet/, accessed
February 2006.

[9] “The Honeynet Project,” http://www.honeynet.org, accessed February 2006.

[10] McCarty, Bill, “The Honeynet Arms Race,” IEEE Security and Privacy, 1(6), pp.
79-82, November/December 2003.

[11] “VMware User’s Manual,” http://www.vmware.com/pdf/ws5_manual.pdf, accessed
November 2005.

[12] Microsoft Windows Server 2003, “Internet Information Services,”
http://www.microsoft.com/WindowsServer2003/iis/default.mspx, accessed November
2005.

[13] “Dissecting Snort,” http://vig.pearsonptr.com:8081/samplechapter/157870281X.pdf,
accessed November 2005.

56

[14] Rowe, Neil C., Duong, B. T., and Custy, John, “Fake Honeypots: A Defensive
Tactic for Cyberspace,” draft, Computer Science Department, Naval Postgraduate
School, March 2006.

57

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library, library@nps.edu
Naval Postgraduate School
Monterey, CA

3. Dr. Neil Rowe, ncrowe@nps.edu
Naval Postgraduate School
Monterey, CA

4. Mr. J.D. Fulp, jdfulp@nps.edu
Naval Postgraduate School
Monterey, CA

5. Dr. Cynthia E. Irvine, irvine@nps.edu
Naval Postgraduate School
Monterey, CA

6. Binh T. Duong, btduong@nps.edu
Naval Postgraduate School
Monterey, CA

7. John Custy, custy@spawar.navy.mil
SPAWAR
San Diego, CA

